AIR MATH

Math Question

The proof that \( \triangle \mathrm{ACB}=\triangle \mathrm{ECD} \) is shown.
What is the missing statement in the proof?
Given: \( \overline{\mathrm{AE}} \) and \( \overline{\mathrm{DB}} \) bisect each other at \( \mathrm{C} \).
Prove: \( \triangle \mathrm{ACB} \approx \triangle \mathrm{ECD} \)
\( \angle B A C \cong \angle D E C \)
\( \angle \mathrm{ACD}=\angle \mathrm{ECB} \)
\( \angle \mathrm{ACB} \cong \angle \mathrm{ECD} \)
\( \angle B C A \cong \angle D C A \)

Solution

solution

AIR MATH homework app,
absolutely FOR FREE!

  • AI solution in just 3 seconds!
  • Free live tutor Q&As, 24/7
  • Word problems are also welcome!
appstoreplaystore

Scan the QR code below
to download AIR MATH!

qrcode