AIR MATH

Math Question

Which table shows a function that is increasing only over the interval \( (-2,1) \), and nowhere else?
\begin{tabular}{|c|c|}
\hline\( x \) & \( f(x) \) \\
\hline\( -3 \) & \( -6 \) \\
\hline\( -2 \) & \( -3 \) \\
\hline\( -1 \) & \( -1 \) \\
\hline 0 & 1 \\
\hline 1 & 3 \\
\hline 2 & 6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline\( x \) & \( f(x) \) \\
\hline\( -3 \) & \( -2 \) \\
\hline\( -2 \) & \( -4 \) \\
\hline\( -1 \) & \( -1 \) \\
\hline 0 & 1 \\
\hline 1 & 4 \\
\hline 2 & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline\( x \) & \( f(x) \) \\
\hline\( -3 \) & \( -3 \) \\
\hline\( -2 \) & \( -5 \) \\
\hline\( -1 \) & \( -7 \) \\
\hline 0 & \( -6 \) \\
\hline 1 & 1 \\
\hline 2 & \( -1 \) \\
\hline \multicolumn{2}{|c}{} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline\( x \) & \( f(x) \) \\
\hline\( -3 \) & 5 \\
\hline\( -2 \) & 7 \\
\hline\( -1 \) & 1 \\
\hline 0 & 0 \\
\hline 1 & \( -4 \) \\
\hline 2 & \( -2 \) \\
\hline
\end{tabular}

Solution

solution

AIR MATH homework app,
absolutely FOR FREE!

  • AI solution in just 3 seconds!
  • Free live tutor Q&As, 24/7
  • Word problems are also welcome!
appstoreplaystore

Scan the QR code below
to download AIR MATH!

qrcode