AIR MATH

Math Question

Question 10 of 10
PROOF Complete the two-column proof by dragging the missing statements and reasons into the correct order.
Given: \( \angle K J M \cong \angle K L M, \overline{J K} \cong \overline{K L} \), and \( \overline{K M} \) bisects \( \angle K \) and \( \overline{J L} \).
Prove: \( \triangle J K M \cong \triangle L K M \)
Proof:
\begin{tabular}{|l|l|}
\hline Statements & Reasons \\
\hline 1. \( \angle K J M \cong \angle K L M \) & Given \\
\hline 2. \( \overline{K M} \) bisects \( \angle K \) and \( \overline{J L} . \) & Given \\
\hline 3. \( \angle J K M \cong \angle L K M \) & \( ? \) \\
\hline 4.? & Third Angles Theorem \\
\hline 5. \( \overline{J K} \cong \overline{K L} \) & ?ef. of segment bisector \\
\hline 6. ? & Reflexive Prop. of Congruence \\
\hline 7. ? & ? \\
\hline 8. \( \Delta J K M \cong \Delta L K M \) & \\
\hline
\end{tabular}
(i) Instructions
\[
\overline{J M} \cong \overline{L M}
\]
\[
\overline{K M} \cong \overline{K M}
\]
Def. of congruent triangles
\[
\angle J M K \cong \angle L M K
\]
Def. of angle bisector
Given

Solution

solution

AIR MATH homework app,
absolutely FOR FREE!

  • AI solution in just 3 seconds!
  • Free live tutor Q&As, 24/7
  • Word problems are also welcome!
appstoreplaystore

Scan the QR code below
to download AIR MATH!

qrcode