AIR MATH

Math Question

Question 15 of 40
James is given the diagram below and asked to prove that \( \angle D \cong \angle F \). What would be the missing step of the proof?
Given: \( \overline{D E} \simeq \overline{F E} \), and \( \overline{E O} \) forms the angle bisector of \( \angle D E F \).
Prove: \( \angle D \cong \angle F \)
\begin{tabular}{l}
\begin{tabular}{|l} 
Statements \\
1. \( \overline{\mathrm{DE}} \cong \overline{\overline{F B}}, \overline{\mathrm{EO}} \) forms the angle \\
bisctor of \( \angle \mathrm{DEF} \)
\end{tabular} \\
\hline 2. \\
\hline 3. \( \overline{\overline{B O}} \cong \overline{\overline{B O}} \) \\
\hline 4. \( \triangle D E O \cong \triangle F E O \) \\
\hline 5. \( \angle D \cong \angle F \) \\
A. \( \angle E O F \cong \angle E O D \)
\end{tabular}
B. \( \angle D E O \cong \angle F E O \)
C. \( \angle E D O \cong \angle E F O \)
D. \( \angle E D O \cong \angle E D O \)

Solution

solution

AIR MATH homework app,
absolutely FOR FREE!

  • AI solution in just 3 seconds!
  • Free live tutor Q&As, 24/7
  • Word problems are also welcome!
appstoreplaystore

Scan the QR code below
to download AIR MATH!

qrcode