AIR MATH

Math Question

7. Given: \( \overline{K H} \cong \overline{K J}, \overline{K M} \) bisects \( \overline{H J} \).
Prove: \( \angle H \cong \angle J \)
Supply the missing statement in Statement 5 of the proof of the Isosceles Triangle Theorem.
Begin with isosceles \( \triangle H K J \) with \( \overline{K H} \cong \overline{K J} \). Construct \( \overline{K M} \), a bisector of the base \( \overline{H J} \).
Statements 1. \( \overline{K M} \) bisects 2. \( \overline{H M} \cong \overline{J M} \)
Reasons

Solution

solution

AIR MATH homework app,
absolutely FOR FREE!

  • AI solution in just 3 seconds!
  • Free live tutor Q&As, 24/7
  • Word problems are also welcome!
appstoreplaystore

Scan the QR code below
to download AIR MATH!

qrcode