Math Question

Consider the figure to the right.
Given: \( \overline{C T} \cong \overline{P M}, \overline{C T} \| \overline{P M} \)
Prove: \( \overline{C A} \cong \overline{M A} \)
Shown below are the statements and reasons for the proof.
They are not in correct order.
\hline \multicolumn{1}{|c|}{ Statements } & \multicolumn{1}{|c|}{ Reasons } \\
\hline I. \( \quad \triangle C A T \cong \triangle M A P \) & AAS \\
\hline II. \( \quad \angle C A T \cong \angle P A M \) & Vertical Angles Theorem \\
\hline III. \( \quad \overline{C T} \cong \overline{P M}, \overline{C T} \| \overline{P M} \) & Given \\
\hline IV. \( \quad \overline{C A} \cong M A \) & CPCTC \\
\hline V. \( \quad \angle C T A \cong \angle M P A \) & Alternate Interior Angles Theorem. \\
Which of these is the most logical order for the statements and reasons?



AIR MATH homework app,
absolutely FOR FREE!

  • AI solution in just 3 seconds!
  • Free live tutor Q&As, 24/7
  • Word problems are also welcome!

Scan the QR code below
to download AIR MATH!